摘要:本文通过经过对失效件进行外观检查、SEM+EDS检查、硬度试验、金相分析、化学成分分析等方法,进行失效分析,找到失效原因为:轴颈位置补焊后存在较大的热应力,轴肩过渡圆角位置存在未焊合的缺口,加上轴肩过渡圆角属于易应力集中位置,在扭力作用下未焊合的缺口成为疲劳源,最终导致扭转疲劳断裂失效。
1、前言
失效件为汽车电机轴,材质为42CrMo,热处理工艺为调质处理,机加工顺序为车、磨、铣。该电机轴在使用4年左右,轴承损坏并更换过轴承,更换轴承后使用一段时间发生断轴,断面正好与轴承背面贴平。如图1所示,断裂位置位于P1和P2之间,P2和P3本为一体,厂家已将P2、P3之间部分锯切掉,此部分距离断口较远,不影响断轴原因分析。
2、检查分析
2.1 外观检查
断口两部分能无缝对接,无明显塑性变形;P1靠近断口部分表面呈高温氧化色,大约占半根轴的长度,断口位于大径与小径几何尺寸突变台阶的R角。
P1断口外圈亮色且有同心圆周痕的位置为轴肩台阶面,靠近外表面有熔珠状金属黏附在表面,熔珠呈高温氧化色;断口外圈基本上已被摩擦撞击破坏,只有中间区域断口完好,可观察到明显的扭转疲劳条纹。
P2表面具有明显圆周方向、宽度一致的摩擦痕迹,摩擦痕较浅,为轴颈位置;在轴颈的两侧可观察到明显未熔合金属层,结合P1断口表面存在熔珠现象,推断电机轴可能存在补焊,后续通过金相分析和SEM/EDS分析再验证。
P2断口平整,断面与轴向垂直,断口外表面多处存在缺口及裂纹,缺口内表面呈氧化色且有较多污染物;断口外圈光滑且呈暗色,占整个断口面积3/4左右,部分亮色区域为断轴后撞击摩擦形成;中心区域若干同心圆状的扭转疲劳条纹,占整个断口面积1/4左右,呈扭转疲劳特征。
2.2 SEM+EDS检查
P1断口边缘为轴肩位置,可观察到明显的熔珠;断口外圈大部分区域已被摩擦撞击破坏,未破坏区域呈暗色,表面光滑,为穿晶解理特征;断口心部可观察到明显的同心圆形疲劳条带,为扭转疲劳断口。
P2断口形貌与P1类似,外边存在较多缺口,对缺口金相EDS微区成分分析,结果见表1,外边缘成分与心部成分存在差异(外边缘不含Cr、Mn),确认外边缘不同形貌位置为补焊层。
2.3 硬度试验
按GB/T 230.1-2009标准方法检验失效件横截面心部和外表面硬度。
GB/T 3077-199中42CrMo的淬火+回火(调质处理)工艺后的硬度要求为≤217HBW,参照ASTM E140-05E1《金属标准硬度换算表》标准转换成洛氏硬度约为20HRC,心部硬度偏高,外表面硬度偏低。
2.4 金相分析
如图20-图25所示,沿P1轴向做切片,抛光腐蚀后发现轴表面与心部组织具有不同组织,界限明显,确定轴承装配位置存在补焊操作,断口位于补焊边缘的热影响区,将图中不同组织区域依次标记为A、B、C:A为补焊熔融区,B为轴热影响区,C为轴基材,金相组织依次:A区为网状、粗针状铁素体+粒状和针状马氏体+针片状魏氏体,按GB/T1329-1991评定魏氏体组织为B系列5级;B区为少量粒状体铁素体基体珠光体;C区为少量针状魏氏体+保留马氏体位向的针状索氏体,心部带状组织明显,按GB/T1329-1991评定带状组织级别为C系列5级。
2.5 化学成分分析
采用ICP分析电机轴材质成分,分析结果见表3,与GB/T 3077-1999对照,符合42CrMo牌号钢材的标准要求,无错料现象。
3、理论分析
一般轴颈补焊过程中要遵循的以下原则:
(1)由于所焊接的电机轴是经过调质处理的,在焊接加工后不可能对其进行恢复热处理工艺,因此,焊接后的强度要达到或接近电机轴原有的机械性能,并在焊接过程中采取合理措施减小热影响区的软化。
(2)尽可能减小焊接变形,为后续的机加工带来方便。
(3)碳量及合金元素含量较高,焊接时有较大的热裂纹敏感性并有较大的冷裂纹倾向,焊接时应避免焊接裂纹的产生。
从外观检查及低倍分析可知,断口位于轴肩过渡圆角位置,该位置存在较多补焊后未焊合的缺口,且缺口的尺寸较大,约半根轴表面呈高温氧化色,说明在补焊过程中受热程度特别高,影响范围大,即补焊后残留较高的热应力。
后续SEM/EDS、金相分析确定断裂起源于表面的未焊合的缺口,也是补焊后的热影响区,呈多源分布特征。熔融区存在较多的魏氏体组织,心部也存在少量魏氏体组织和和较严重的带状组织,魏氏体组织塑性差、韧性低,会明显降低轴的强度,也是热应力残留较高的特征之一,可见电机轴在补焊后未能消除热应力影响。
从硬度上看,参考GB/T 3077-199标准,心部受焊接热影响,导致硬度偏高。
从成分上看,电机轴用料正确,无错料现象。
综上,电机轴失效原因为补焊位置存在较大热应力,且易应力集中的轴肩过渡圆角位置存在表面缺陷,受扭力作用条件下在表面缺口缺陷位置疲劳起源开裂,导致电机轴扭转疲劳失效。
4、结论
电机轴失效的原因为轴颈位置补焊后存在较大的热应力,轴肩过渡圆角位置存在未焊合的缺口,加上轴肩过渡圆角属于易应力集中位置,在扭力作用下未焊合的缺口成为疲劳源,最终导致扭转疲劳断裂失效。
以上就是“42CrMo轴承断裂失效分析”的相关解答,无锡力博实验室是一家专注于可靠性试验与项目研发的第三方检测机构,公司拥有大型实验室,可以承接失效分析、及CNAS/CMA报告试验,如果您有产品需要做相关测试的,欢迎电话咨询!
Copyright © 2017-2022 无锡力博实验室认可服务有限公司 版权所有 苏ICP备17058088号 技术支持:迅诚科技